Final - Optimization (2020-21)

Time: 3.5 hours.

Attempt all questions. The total marks is 50 You may quote any result proved in class without proof.

1. Consider the problem: minimize $2\left|x_{1}\right|+5\left|x_{2}-6\right|$ subject to $\left|x_{1}+3\right|+x_{2} \geq 3$. Reformulate this as a linear programming problem. [4 marks]
2. Give an example of a linear program $\min _{\mathbf{x} \in P} \mathbf{c}^{T} \mathbf{x}$, where the polyhedron P has an extreme point and the linear program has optimal cost equal to $-\infty$. [$\mathbf{3}$ marks]
3. A polyhedron is represented by a system of equality and inequality constraints.
(a) Give an example of a polyhedron P and a point \mathbf{x}, and two representations of P, such that \mathbf{x} is a basic solution under one representation but is not a basic solution under the other representation. [2 marks]
(b) Can one create an example of P with two representations, and an \mathbf{x} such that \mathbf{x} is a basic feasible solution (bfs) under one representation and not a bfs under the other representation? Explain. [2 marks]
4. Consider the following polyhedron in three dimensions: $x+2 y+3 z \geq 5,2 x+y+z \geq 6$. Find a line that is contained in the polyhedron. [4 marks]
5. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a convex function and let $S \subset \mathbf{R}^{n}$ be a convex set. Let \mathbf{x}^{*} be an element of S. Suppose that \mathbf{x}^{*} is a local optimum for the problem of minimizing $f(\mathbf{x})$ over S; that is, there exists some $\epsilon>0$ such that $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S$ for which $\left\|\mathbf{x}-\mathbf{x}^{*}\right\| \leq \epsilon$. Prove that \mathbf{x}^{*} is globally optimal; that is, $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S$. [4 marks]
6. Consider the following polyhedron in standard form: $2 x_{1}+x_{2}+2 x_{3}+x_{4}=3, x_{1}+x_{2}+$ $5 x_{3}+3 x_{4}=2$ and all $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$.
(a) Find the basic feasible solution where x_{1}, x_{2} are the basic variables. [1 mark]
(b) Find the 3rd basic direction. [2 marks]
(c) If we are minimizing $x_{1}+x_{2}+x_{3}+x_{4}$ over the polyhedron, what is the reduced cost along the 3rd basic direction? [2 marks]
7. Let \mathbf{A} be a square matrix with positive entries, and suppose the sum of the entries in each row is equal to 1 . Show that 1 is an eigenvalue and that every other eigenvalue λ satisfies $|\lambda|<1$. [5 marks]
8. Solve the following linear program. [5 marks]

$$
\begin{array}{rcccl}
\text { minimize } & -3 x_{1} & -2 x_{2} & +5 x_{3} & \\
\text { such that } & 4 x_{1} & -2 x_{2} & +2 x_{3} & \leq 4, \\
& 2 x_{1} & -x_{2} & +x_{3} & \leq 1, \\
\text { and all } & x_{1}, & x_{2}, & x_{3} & \geq 0 .
\end{array}
$$

9. Consider the following linear program: minimize $-x_{1}-2 x_{2}+x_{3}+2 x_{4}-6 x_{5}$ subject to $x_{1} \geq 0, x_{2} \geq 0, x_{3} \leq 0, x_{4} \leq 0$ and x_{5} free, and

$$
\begin{array}{cccccc}
-x_{1} & & -x_{3} & +x_{4} & -x_{5} & \geq 1 \\
& -x_{2} & +x_{3} & +4 x_{4} & -2 x_{5} & \geq 3
\end{array}
$$

(a) Find the dual of the above problem. [3 marks]
(b) Find the optimal cost of the above problem. [4 marks]
10. Consider the incapacitated network flow problem on the directed graph shown below. The numbers next to each directed arc \rightarrow is the cost associated to the arc, while the numbers next to \Rightarrow is the external supply/demand at the node.

Denote by \mathbf{c} the vector of costs corresponding to the arc. We are interested in minimizing the total cost $\mathbf{c}^{T} \mathbf{f}$, where the flow vector \mathbf{f} satisfies the flow conservation equations and $\mathbf{f} \geq \mathbf{0}$.
(a) Find an optimal basic feasible solution (feasible tree solution) to the problem. marks]
(b) Find the optimal cost for the problem. [2 marks]

